Triton VM Code Audit Final Report by
Hridam Basu

Overview

Background

Triton VM has requested Hridam Basu for a cryptographic code audit of the Triton VM
project based on ZK-STARKs. Triton VM is used in STARK-based private payment system

called Neptune Cash.

Project Dates

o 30th September - Audit Starts
e 21st October - Delivery of Initial Audit Report
e 11th November - Delivery of Final Audit Report

Review Team

Hridam Basu, Senior Cryptography Researcher and Engineer

Past Experience: Ethereum Foundation - Privacy and Scaling Explorations (PSE), Polygon
Technology, Aztec Network, Findora, Bolt Labs.

Short Stints: AT&T Research Labs New York City, NTT Research Labs Tokyo, TCS
Innovations Labs India.

Education: Masters degree from Northeastern University, USA and Undergrad from

Jadavpur University, India.
Coverage

Target Code and Revision

The audit covers repository triton-vm on https://github.com/TritonVM/triton-vm branch
master at the time of commencement of the audit, namely v0.42.1 and commit id d2c6fc7.
The following folders were audited from the Triton-VM repository:

o Triton ISA: https://github.com/TritonVM/triton-vm/tree/master/triton-isa
e Triton VM: https://github.com/TritonVM/triton-vm/tree/master/triton-vm
o Triton AIR: https://github.com/TritonVM/triton-vm/tree/master/triton-air

Supported Documentation


https://github.com/TritonVM/triton-vm
https://github.com/TritonVM/triton-vm/tree/master/triton-isa
https://github.com/TritonVM/triton-vm/tree/master/triton-vm
https://github.com/TritonVM/triton-vm/tree/master/triton-air

The Triton VM book is found at https://triton-vm.org/spec/. This book contains detailed
theoretical and mathematical descriptions of each of the constituent components of the
Triton VM.

Areas of Concern

Our investigation focussed on the following areas:

o Correctness of the implementation

Soundness of the Stark Verify function

Vulnerabilities in the Code leading to attacks

Cryptographic errors leading to basic mathematical vulnerabilities

Code Quality issues including documentation
Findings

We have examined the Triton-AIR in detail for the arithmetization procedure. In particular,
we have carefully verified all the 4 types of constraints defined in the protocol specification
and code base corresponding to each of the trace tables mentioned in detail in the rest of
the document. All of the constraints in the codebase match exactly with the constraints
mentioned in the specification of Triton VM. We have not identified any cryptographic

soundness error in the entire code.

Detailed Analysis of the Cryptographic Code

This document provides an in-depth analysis of the cryptographic components of Triton-VM
as utilized in Neptune Cash, focusing on core components within the Triton-AIR, Triton-VM,
and Triton-1SA folders. These elements enable verifiable computation based on STARKs
(Scalable Transparent Arguments of Knowledge), an efficient and secure proof system.
Below is a refined breakdown of how these components interact, along with an examination

of the tables and data structures.

Overview of Triton-VM Architecture

Triton-VM is a virtual machine designed to execute and verify cryptographic computations
using the STARK framework. This framework provides post-quantum security, scalability,
and transparency without requiring trusted setups. Triton-VM comprises three primary

components:

o Triton-VM: The virtual machine that manages state transitions and computation.

o Triton-AIR: The Algebraic Intermediate Representation (AIR) component, defining the

constraints that describe the evolution of the VM's state.


https://triton-vm.org/spec/

o Triton-ISA: The instruction set architecture (ISA), which defines the operations the VM

supports.

These components work in tandem to facilitate efficient and secure verifiable computations.

Triton-VM: Execution Model
State Transition and Execution Trace

Triton-VM operates on a series of state transitions captured in an execution trace, with each
step in the trace representing the VM's state at a specific point in the computation. This
execution trace, termed the Algebraic Execution Trace (AET), is the sequence of states that

(in an honest scenario) satisfy the AIR constraints. Each state includes key components:

o Program Counter (PC): Tracks the current instruction being executed.
o Stack: Holds intermediate values and maintains the state of the VM’s stack.

o Memory: Stores data loaded during computation, with elements sorted by memory

address rather than cycle count.
e Input/Output Buffers: Manage data inputs and outputs during execution.

o Registers: Store critical values, such as hash accumulators or jump targets.

The VM operates in cycles, with each cycle processing one instruction and updating the
VM's state accordingly. The execution trace grows with each step, representing the VM'’s

state evolution as constrained by Triton-AIR.

Triton-AIR: Algebraic Intermediate Representation

Triton-AIR provides the algebraic foundation for the STARK proof system, translating the
VM’s state evolution into polynomial constraints. The AET satisfies these constraints,

forming the core of the proof.

Trace Tables

Triton-AIR organizes the execution trace into several tables, each serving different purposes

and indexed by different criteria:

o Program Table: Contains the program’s instructions at each step in the trace, enforcing
the program counter’s correct progression.

o Processor Table: Tracks the processor’s internal state, including stack and register
values, and enforces valid state transitions.

e Op Stack Table: Contains the operand stack’s contents, sorted by the stack pointer, and
ensures correct stack operations (push, pop).

e RAM Table: Represents memory content, sorted by memory address, and enforces

consistency for memory read/write operations.



o Jump Stack Table: Tracks jump operations (such as calls), ensuring correct control flow
without native loop support.

o Hash Table: Contains intermediate hash values, verifying consistency for cryptographic
operations using Tip5 Hash.

o Cascade Table: Manages cascading constraints in the execution trace, enforcing
consistent, multi-step dependencies for computations with nested or sequential
operations, ensuring values propagate accurately.

o Lookup Table: Facilitates efficient, verifiable lookups, validating data dependencies and
cross-references between tables (e.g., Processor, RAM) to maintain computation
integrity.

o U32 Table: Verifies 32-bit unsigned integer operations, enforcing constraints for
arithmetic tasks, handling overflow, and ensuring secure state transitions within the 32-
bit domain.

Each of these tables is represented as polynomials in Triton-AIR, with constraints ensuring
valid execution. These constraints do not enforce behavior directly; instead, the verifier only
accepts a proof if the AET satisfies the AIR constraints.

Constraints

« Initial Constraints: Set the initial conditions for the VM'’s state, such as stack and

register values.

o Consistency Constraints: Ensure that values across cycles remain consistent where

required.

o Transition Constraints: Enforce valid state transitions, such as ensuring stack and

memory operations behave as expected.

o Terminal Constraints: Ensure the final state meets the required conditions, checking
outputs and final register values.

Triton-ISA: Instruction Set Architecture

The Triton-ISA defines the instructions Triton-VM can execute, supporting fundamental
operations without conditional jumps, which would disrupt the zero-knowledge property.
The ISA includes the following key instructions:

o Arithmetic Operations: Basic operations like addition, subtraction, multiplication, and
division.

 Memory Operations: Load and store instructions for accessing memory.

o Stack Operations: Push and pop operations for managing the operand stack.

e Control Flow: A single ca1l1 instruction supports function-like jumps without native
loops or conditional jumps.



o Hash Operations: Cryptographic operations like Tip5 hashes are zk-STARK friendly and
verified using the Hash Table in Triton-AIR.

Interplay Between Triton-VM, Triton-AIR, and Triton-ISA

The three components of Triton work together to create a robust verifiable computation

model:

1. Triton-VM generates an execution trace by processing instructions defined in Triton-
ISA.

2. Triton-AIR converts this trace into polynomial constraints that validate the VM’s state

transitions, stack behavior, and memory accesses.

3. Triton-ISA defines the VM's instruction semantics, shaping the AIR constraints in
Triton-AlIR.

Through this collaboration, the execution trace, tables, and constraints ensure that the VM’s
execution can be verified via STARK proofs, providing Neptune Cash with scalable, post-

quantum secure guarantees on computation correctness.

Tables and Their Interactions

Tables defined in previous section interact to ensure the verifiability of computations
without native loop or conditional jump support, preserving zero-knowledge properties and
scalability.

Conclusion

The Triton-VM architecture, combined with Triton-AIR and Triton-ISA, creates a secure,
efficient environment for verifiable computation using STARKs. This setup allows privacy-
focused applications like Neptune Cash to cryptographically prove computation
correctness, leveraging trace tables, polynomial constraints, and a minimal instruction set.
The careful alignment of execution traces, data tables, and algebraic constraints ensures
robust verifiability, aligning with Neptune Cash's commitment to secure, privacy-preserving

computation.
General Comments

Code Quality

We performed a manual review of the repositories in scope and found the codebase to be
generally organised and well-written. However, we found that the implementation uses
assertions at several places in AIR, ISA and VM to verify the correctness of input data or
computations while we recommend using error messages instead to allow the user to

benefit from a more graceful handling of such cases.



Documentation And Code Comments

Website:

In addition, this audit report was prepared with the following documents as a reference:

Triton VM Specification

The Tip5 Hash Function for Recursive STARKs by Alan Szepieniec, Alexander Lemmens,
Jan Ferdinand Sauer, Bobbin Threadbare, and Al-Kindi

Stark Anatomy by Alan Szepieniec
Multivariate lookups based on logarithmic derivatives: by Ulrich Habdck

DEEP-FRI: Sampling Outside the Box Improves Soundness: by Eli Ben-Sasson, Lior
Goldberg, Swastik Kopparty, Shubhangi Saraf

Scope

The audit does not include code from the following folders:

e Triton Constraint Builder: Link

e Triton Constraint Circuit: Link

The audit also does not include the following:

e Tests

e Benchmarks

o Code related to the naked operation of the VM (without proving and verifying anything)

and code written in tasm

Dependencies

We did not identify any vulnerabilities in the implementation's use of dependencies.

Specific Issues And Suggestions

Issue A: Error propagation instead of unwrap

Location

Triton VM Stark
Jump Stack Table
ISA - OP Stack
Lookup Table
Master Table (1)
Master Table (2)
Master Table (3)


https://triton-vm.org/
https://triton-vm.org/spec/
https://eprint.iacr.org/2023/107
https://aszepieniec.github.io/stark-anatomy/
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2019/336.pdf
https://github.com/TritonVM/triton-vm/tree/master/triton-constraint-builder
https://github.com/TritonVM/triton-vm/tree/master/triton-constraint-circuit
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/stark.rs#L232
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/jump_stack.rs#L82
https://github.com/TritonVM/triton-vm/blob/master/triton-isa/src/op_stack.rs#L539
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/lookup.rs#L55
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/master_table.rs#L760
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/master_table.rs#L852
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/master_table.rs#L992

OP Stack Table
Processor Table (1)
Processor Table (2)

Processor Table (3)

Synopsis

The code currently uses unwrap () to handle potential errors during operations involving

array creation and type conversions. While unwrap () works in certain situations, it causes

the program to panic if an error occurs, which can be problematic in production

environments. Instead of using unwrap () , error propagation should be applied to handle

these potential failures gracefully.

Impact

Current Behavior: When an error occurs during the creation of an array or the
conversion of a vector, the unwrap () call will cause the program to panic, leading to an
abrupt termination of the application. This approach is risky in systems where
robustness is critical (e.g., cryptographic proving systems, blockchain environments).
Proposed Change: Error propagation will replace unwrap () , allowing errors to be

returned and handled appropriately without crashing the program.

Impact on Security and Stability: Removing unwrap () in favor of error propagation
improves the reliability of the code, ensuring that unexpected errors do not cause the
system to crash. This is crucial for systems where continuous uptime and resilience are

essential.

Feasibility

Replacing unwrap () with proper error propagation is straightforward. Both cases can
be modified to return a Result and propagate the error upwards.

Rust's error-handling model makes it easy to propagate errors using Result and the ?
operator. No significant changes in logic are required, making this update highly feasible

without disrupting the existing code.

Technical Details

We describe the technical details with respect to two out of the eleven locations mentioned

above:

Current Code:

Line 1:

Array2::from shape vec((main_ table.nrows (), 1), auxiliary column) .unwrap ()


https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/op_stack.rs#L171
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/processor.rs#L156
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/processor.rs#L178
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/processor.rs#L210

e Line 2:

let out of domain curr row quot segments = quotient segment polynomials
.map (|poly| poly.evaluate (out of domain point curr row pow num segments))
.to _vec()
.try into()
.unwrap () ;

Proposed Code:

e Line 1 Replacement:

let array = Array2::from shape vec((main table.nrows (), 1), auxiliary column)

.map_err (|e| ProvingError::ArrayCreationError(e.to string()))?;
This replaces unwrap () with proper error propagation by returning a Result if array creation
fails, and an appropriate error message is passed upward.

e Line 2 Replacement:

let out of domain curr row_quot segments: Result< , ProvingError>
= quotient segment polynomials

.map (|poly| poly.evaluate (out of domain point curr row pow num_segments))

.to_vec()
.try into()
.map_err (| _| ProvingError::ConversionError
("Failed to convert polynomial segments".to string()))?;

This replaces unwrap () with error propagation in the conversion logic, returning an error

with a custom message if the try into() conversion fails.

o Error Types: New error variants (e.g., ArrayCreationError, ConversionError) can be
added to the custom ProvingError enum to handle these cases gracefully.

Remediation

e Remove unwrap() Calls: Replace all instances of unwrap() in the code with proper
error handling using Result types, ensuring that errors are propagated upwards instead
of causing a panic.

e Use map err() for Custom Error Messages: Convert errors into meaningful messages
that can help developers understand the cause of failure. This can be done by

leveraging the map err() function.

o Error Documentation: Clearly document the types of errors that could occur in the
function signatures and ensure developers know how to handle these errors effectively.

Status



The Triton VM team partially acknowledged our issue and argued that they should
document the cases where the unwraps cannot fail. For the others, they would consider

returning an error.

Verification

Partially resolved.

Issue B: Integer Overflow error: Use Saturated Add instead of
incrementing +=

Location

e Program (1)
e Program (2)
o AET

« VM (1)

e VM (2)

e VM (3)

e VM (4)

e« VM (5)

e VM (6)

e VM (7)

e« VM (8)

« VM (9)

e VM (10)

« VM (11)

e VM (12)

Synopsis

An integer overflow vulnerability exists where the code increments a variable using the +=
operator. If the variable exceeds the maximum limit for its type, it will wrap around to the
minimum value, leading to potential errors or unintended behavior. Implementing Saturated
Add will ensure that when the maximum value is reached, it will no longer increment, thus

preventing overflow.

Impact

If not addressed, this vulnerability could cause incorrect calculations, data corruption, or
crashes. In certain systems, this overflow could be exploited to cause denial of service
(DoS) or escalate privileges.


https://github.com/TritonVM/triton-vm/blob/master/triton-isa/src/program.rs#L96
https://github.com/TritonVM/triton-vm/blob/master/triton-isa/src/program.rs#L284
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/aet.rs#L231
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L472
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L479
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L493
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L501
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L509
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L517
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L523
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L528
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L587
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L593
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L608
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L623

Feasibility

Mitigating this issue is feasible with minimal changes in the code. Replacing += with a
Saturated Add function in the affected places can eliminate the overflow risk without
affecting the overall logic of the application.

Technical Details

The vulnerable code uses += toincrement an integer value without bounds checking. If the
variable exceeds the maximum value for its type (e.g., u32 or us64 ), it will wrap around. By
using Saturated Add (e.g., u32::saturating add() in Rust), the value will remain at the

maximum limit if an overflow would have occurred.

Remediation

Replace all instances of += that are prone to overflow with a Saturated Add operation, such
as saturating add() in Rust. This will ensure that the value is clamped at the type's

maximum instead of wrapping around to the minimum.

Status

The Triton VM team has again partially acknowledged the issue and argued that in some
cases, it is better to fail on overflow.

Verification

Partially resolved.

Issue C: Iteration Improvement in OP Stack

Location

OP Stack

Synopsis

The Intolterator implementation for OpStack is currently designed to reverse the stack in
place before returning an iterator. The proposed change leverages the iter () method in
conjunction with rev() and cloned() to iterate over the elements in reverse without

modifying the original stack.

Impact

e Current Behavior: The original implementation mutates the internal state of OpStack by
reversing the stack, which could lead to unexpected behavior if the original stack is
needed afterward. This can be problematic in contexts where multiple iterations or

accesses to the original order are required.


https://github.com/TritonVM/triton-vm/blob/master/triton-isa/src/op_stack.rs#L211

o Proposed Behavior: The improved implementation safely iterates over the stack in
reverse order without altering its original state. This change ensures that the stack
remains intact for subsequent operations, enhancing the robustness of the code.

Feasibility

o Effort to Fix: The transition to the improved method requires minimal changes, primarily
modifying the into_iter function.

o Applicability: This solution is applicable in scenarios where immutability of the original
stack is essential, such as in concurrent contexts or when the stack is accessed in

multiple places.

Technical Details

o Original Implementation:

fn into iter(self) -> Self::Intolter ({
let mut stack self.stack;
; // Mutates the stack

stack.reverse ()
stack.into iter () // Returns an iterator over the reversed stack

This code mutates the stack, resulting in potential side effects if the stack is accessed

elsewhere after iteration.

e Improved Implementation:

fn into iter(self) -> Self::Intolter ({
self.stack.iter () .rev () .cloned() .collect::<Vec< >>().into iter ()

}

This revised approach creates an iterator over the stack in reverse order without changing
its internal structure. It clones the elements into a new vector, ensuring that the original

OpStack remains unaltered.

Remediation

o Adopt the Improved Method: Transition to the new implementation that prevents
mutation of the OpStack. This change increases safety and predictability in the code's
behavior.

o Monitor for Performance Impacts: Although the improved method enhances safety, it
introduces a cloning overhead. It is advisable to profile the performance to ensure it

meets requirements in high-performance scenarios.

Status



The Triton VM team has refuted our claim and said that "self" cannot be used afterwards.
We acknowledge their point.
Verification

Resolved.

Issue D: Uniform Sequence Check Enhancement

Location

OP Stack

Synopsis

The function is uniform sequence() checks if all elementsin a given sequence are of the
same type by comparing them to the first element. However, if the sequence is empty,
accessing sequence[0] Will lead to a panic due to out-of-bounds indexing. This presents a

risk of runtime errors and instability in systems using this function.

Impact

If called with an empty sequence, the current implementation will panic, potentially crashing
the application or causing unintended behavior. This issue could arise in scenarios where
user input, dynamically generated data, or external factors result in an empty sequence
being passed to this function. The impact ranges from minor to severe, depending on how
the function is used in the application.

Feasibility

The issue is easy to reproduce by passing an empty sequence (s«[]1) to the function,
triggering a panic. Fixing the issue is straightforward and involves adding a guard clause to
check for an empty sequence before performing the comparison logic.

Technical Details
o Current behavior: The function does not account for the case where sequence is empty.
When an empty sequence is passed, accessing sequence[0] results in a runtime error.

e Proposed change: Introduce a condition to check if the sequence is empty
(sequence.is empty()) atthe beginning of the function. If it is empty, return true or
handle the case as per the desired application behavior (e.g., returning false if a uniform
seguence cannot exist in an empty set).

Remediation

Modify the function to handle empty sequences gracefully. Example fix:


https://github.com/TritonVM/triton-vm/blob/master/triton-isa/src/op_stack.rs#L256C5-L258C6

pub fn is uniform sequence (sequence: &[Self]) -> bool {
if sequence.is empty () {
return true;
// Or false, depending on desired behavior for empty sequences
}

sequence.iter () .all(|io| io.is same type as (&sequence[0]))

This will prevent the function from panicking and provide a predictable response when the
sequence is empty.

Status

The Triton VM team has argued that no out-of-bounds access will realistically occur and has

also added a test to ensure this. We acknowledge their point.

Verification

Resolved.

Issue E: Integer Overflow Error - Saturated Mul instead of *

Location

Stark

Synopsis

An integer overflow issue occurs in the expression trace domain generator *

out of domain point curr row . If the result of the multiplication exceeds the maximum
allowable value for the integer type, an overflow will occur, potentially leading to undefined
behavior. The issue can be resolved by using saturated mul () , Which ensures that if an

overflow would occur, the result is set to the maximum possible value for that type.

Impact

If the overflow is not handled, the computation of out_of_domain_point_next_row may result
in incorrect values, which would lead to incorrect execution of the cryptographic protocol.
This could compromise the integrity of the proof generation process, potentially leading to
incorrect or unverifiable proofs. In a worst-case scenario, this could be exploited to bypass
security checks or corrupt the proof system.

Feasibility

The fix is highly feasible and requires minimal code changes. By replacing the simple
multiplication operator (*) with a saturated multiplication method (such as


https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/stark.rs#L208

saturating mul () in Rust), the integer overflow will be prevented. This modification can be

applied locally without affecting other parts of the codebase.

Technical Details

The overflow occurs in the following line:

let out of domain point next row
= trace domain generator * out of domain point curr row;

If the multiplication of trace_domain_generator and out_of_domain_point_curr_row exceeds

the type’s maximum limit (e.g., u32 or u64), the result wraps around, causing an overflow.

To resolve this, Rust's saturating mul () method can be used, which ensures that the
result will stay within the bounds of the type, saturating at the maximum value instead of

wrapping around.

Example of the corrected line:

let out of domain point next row

= trace_domain_generator.saturating mul (out_of domain_point_ curr_row) ;
Remediation
Replace the standard multiplication operation with Saturated Mul by using
saturating mul () in Rust. This ensures that the multiplication will not overflow,
safeguarding the integrity of the proof generation process.
Status
The Triton VM team has argued that multiplication only occurs on Field elements. We totally
acknowledge their claim.
Verification
Resolved.

Issue F: Use debug macro or propagate error upwards instead of
assert statements

Location

o Stark
e Jump Stack
e RAM

e Arithmetic Domain


https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/stark.rs#L80
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/jump_stack.rs#L147
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/table/ram.rs#L209
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/arithmetic_domain.rs#L116

e Hash Table
e« VM

Synopsis

The code currently uses assert! and assert_ne! macros to enforce conditions during
runtime. These assertions are used to ensure that the processor table has at least one row
and that the FRI expansion factor is greater than one. In production code, assertions like
these can cause abrupt termination (panic) of the program, which is undesirable for robust
applications. Instead, proper error handling should be implemented by either propagating
the errors upward or using the debug_assert! macro for less critical, debug-only checks.

Impact

o Current Behavior: When the conditions in the assertions fail, the program will panic and
terminate unexpectedly. This could lead to data loss or service unavailability, especially
in environments where uninterrupted service is critical (e.g., cryptographic proving
systems or blockchain nodes).

o Proposed Change: Using Result for error handling will allow the program to gracefully
handle these errors and propagate them upwards, providing the caller an opportunity to
handle the failure.

o Impact on Security and Stability: Replacing assertions with proper error handling
ensures the system remains stable under unexpected conditions and improves the
overall resilience of the application.

Feasibility

e The replacement of assertions with error handling is straightforward. Both cases can
use the Result type to propagate errors upwards. The assert! statements can be
replaced with conditional checks that return an error.

o For the development and debugging phase, debug_assert! can still be used to catch
potential errors during testing without affecting production stability.

e Rust has built-in mechanisms for error propagation (e.g., the ? operator and Result
types), making it feasible to implement without significant refactoring.

Technical Details

We describe the technical details with respect to two out of the total six locations that are

mentioned above:
Original Code:

e Assertion 1:


https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/table/hash.rs#L157
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L181

assert! (table len > 0,

"Processor Table must have at least 1 row.");

e Assertion 2:

assert ne! (0, log2 of fri expansion factor,
"FRI expansion factor must be greater than one.");

Proposed Code:

e Assertion 1 Replacement:

if table len == {
return Err (ProvingError::InvalidTableLength
("Processor Table must have at least 1 row.")):;

This propagates an error if the table length is invalid, allowing upstream logic to handle it

instead of panicking.

e Assertion 2 Replacement:

if log2 of fri expansion_ factor ==
return Err (ProvingError::InvalidFRIExpansionFactor

("FRI expansion factor must be greater than one."));

This checks the condition and propagates an error if the expansion factor is invalid.

o Alternatively, during debugging, debug_assert! can be used:

debug_assert!(table_len > 0, "Processor Table must have at least 1 row.");

Remediation

o Replace Assertions: Replace the use of assert! and assert_ne! macros with error
propagation via Result types, ensuring that errors are reported back to the caller for
proper handling.

o Use Debug Assertions: Where applicable, use debug_assert! to catch potential errors
during testing or debugging phases, without affecting production performance or
stability.

o Documentation: Document the potential errors returned by these functions, making it
clear to developers that certain invalid states (e.g., zero-length tables or invalid FRI

expansion factors) will return errors.



Status

The Triton VM team has totally agreed to the issue that we raised here.

Verification

Unresolved.

Issue G: Cascade Table and Lookup Table Multiplicities

Location

Algebraic Execution Trace

Synopsis

The current implementation lacks adequate handling and validation of multiplicities for the
Cascade and Lookup tables. This can lead to inaccuracies in tracking the number of times
entries in these tables are accessed, potentially compromising the integrity of the
cryptographic proofs generated.

Impact

Inaccurate multiplicity tracking can result in:

o Faulty cryptographic proofs that may be accepted as valid despite being based on
incorrect data.

e Increased vulnerability to attacks exploiting these inaccuracies, potentially leading to

compromised security.

o Difficulty in debugging and verifying the correctness of operations due to inconsistent
state information.

Feasibility

The proposed fixes for the multiplicity handling are technically feasible, as they involve
implementing additional checks and validations during the entry updates. Modifications can
be made with minimal disruption to existing functionality, and it is straightforward to

integrate these improvements into the current system architecture.

Technical Details

The implementation currently increases multiplicities based on the observed state elements
during hash operations. However, it does not validate whether the updates align with
expected counts. This could lead to incorrect multiplicities being recorded in the
cascade_table_lookup_multiplicities and lookup_table_lookup_multiplicities. The logic should
ensure that multiplicities are updated in a consistent manner, particularly when entries are
added or modified.


https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/aet.rs

Remediation

In order to mitigate this issue:

» Introduce validation checks when increasing multiplicities to ensure that they accurately

reflect the number of lookups performed.

o Implement unit tests to verify that the multiplicities reflect the expected counts after

various operations are executed.

o Document and review the logic surrounding multiplicity updates to ensure clarity and

correctness in the implementation, providing a basis for future audits and assessments.

Status

The Triton VM team has again acknowledged our claim and said that they owuld take a
closer look at the code and perhaps add unit tests and make the code cleaner to resolved
the issue.

Verification

Resolved.

Issue H: Potential Inefficiencies in Iterations

Location

o Cross Table Argument (1)
e Cross Table Argument (2)
e Cross Table Argument (3)

Synopsis

The compute_terminal methods utilize .iter().map() followed by .fold() to process the
symbols array. This chaining can lead to inefficiencies, especially when the array is large, as

it may result in unnecessary intermediate collections.

Impact

In scenarios with a large symbols array, the current implementation may cause increased
memory usage and slower performance due to the creation of intermediate structures
during iteration. This could affect the overall throughput of the cryptographic computations
being performed.

Feasibility

Refactoring the iteration approach is feasible and can be achieved with minimal changes to
the existing logic. The impact on the rest of the codebase should be minimal as long as care
is taken to ensure the correctness of the new implementation.


https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/cross_table_argument.rs#L41
https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/cross_table_argument.rs#L65
https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/cross_table_argument.rs#L88

Technical Details

The current implementations of the compute_terminal methods are as follows:

e PermArg:

symbols
.iter ()
.map (| &symbol| challenge - symbol)
.fold(initial, XFieldElement: :mul)

o EvalArg:

symbols.iter () .fold(initial, |running evaluation, &symbol|
challenge * running evaluation + symbol
})

o LookupArg:

symbols
.iter ()
.map (|symbol| (challenge - symbol.lift()).inverse())
.fold(initial, XFieldElement::add)

Each of these methods can be refactored to use a single loop to accumulate results, thereby

eliminating the intermediate collections.

Remediation
Replace the use of .iter().map().fold() with a single loop construct to accumulate results

directly. For example, in PermArg, you could modify the implementation to:

let mut result = initial;
for &symbol in symbols {

result = XFieldElement::mul (result, challenge - symbol) ;
}

result

Similarly, adjust the other methods to avoid intermediate mappings and folding, thus

optimizing performance.

Status

The Triton VM team has refuted our claim and we acknowledge their point.

Verification

Resolved.



Suggestion A: Club All Imports into a Nested Format

Location

Affects all three sections: Triton-ISA, Triton-VM, Triton-AIR.

Synopsis

The current import structure across the three sections is fragmented, making the codebase
harder to manage and understand. Consolidating imports into a more organized, nested
format would improve code readability, maintainability, and reduce potential for import
conflicts.

Mitigation

Refactor the import statements into a nested structure, grouping related modules under a
common namespace. This will create a cleaner, more intuitive structure, ensuring that

imports are logically organized and easier to trace across the codebase.

Status

The Triton VM team disagreed with our suggestion and argued that readability is a matter of
taste. They instead pointed us to a different Rust formatting standard which would help
them in maintaining the codebase further. While we understand their viewpoint, we would
like to agree to disagree here with them and leave the suggestion here.

Verification

Resolved.

Suggestion B: Improve Documentation for Functions

Location

Affects all three sections: Triton-ISA, Triton-VM, Triton-AlIR.

Synopsis

Many functions across the codebase lack sufficient documentation, which hampers
understanding, especially for new developers or auditors. This affects the clarity of code

logic and could lead to misinterpretation or mistakes.
Mitigation

Ensure that all functions are properly documented with clear, concise descriptions of their
purpose, parameters, and expected behavior. This will enhance code readability, ease future

maintenance, and improve collaboration.

Status



The Triton VM team acknowledged and agreed with our suggestion completely.

Verification

Partially resolved.

Suggestion C: Reduce Code Duplication with a Common Trait or
Abstraction

Location

e Triton VM

e Triton AIR Table Column
Synopsis

There is significant code duplication across various functions, with hardcoded elements that
could be potentially abstracted out. While not strictly required to use a trait, consolidating
these functions into a single abstraction would result in cleaner, more maintainable, and

efficient code.
Mitigation

Refactor the duplicated functions into a common trait or abstraction that can be
implemented across the relevant areas. This will reduce redundancy, make the code more
modular, and enhance overall maintainability without relying on hardcoded logic.

Status

The Triton VM team acknowledged the suggestion but failed to see the problem in vm.rs.

We acknowledge their point.

Verification

Partially resolved.

Suggestion D: Provide User-Facing Messages for Unmatched
Instructions

Location

Instruction Link

Synopsis

The current implementation does not offer any feedback to users when an instruction does
not match any defined arms in the instruction set. This lack of communication may lead to


https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs
https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/table_column.rs
http://vm.rs/
https://github.com/TritonVM/triton-vm/blob/master/triton-vm/src/vm.rs#L350

confusion regarding the system's behavior and can hinder debugging or troubleshooting
efforts.

Mitigation

Implement user-facing messages to indicate when an instruction falls outside the matched
arms. For example, when an unmatched instruction occurs, log a message such as,
"Warning: The instruction provided is not recognized. Please check your input or consult the
documentation for valid instructions." This will enhance user experience by providing clarity

on system behavior and improve overall communication regarding operational status.

Status

The Triton VM team refuted our claim and said that user facing messages were provided
wherever necessary. We agree with their conclusion after taking a closer look.

Verification

Resolved.

Suggestion E: Introduce Constants to a Separate File

Location

Processor Table

Synopsis

The current implementation contains scattered constants and magic numbers across
various sections of the code, which can lead to confusion and make maintenance difficult.
This practice undermines code readability and increases the risk of errors, as the

significance of these values may not be immediately clear.
Mitigation

Refactor the code to move all constants into a separate file named Constants in a suitable
module. Define an enum or structured constants to provide meaningful names for these
values, which will enhance code clarity and maintainability. This consolidation will help
eliminate magic numbers and centralize configuration, making it easier to update and

manage constants in the future.

Status

The Triton VM team has accepted this suggestion as a good idea.
We are specifically relating to the readability of the AIR constraints. We feel they should

have a placeholder for constants.

Verification


https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/table/processor.rs#L469C5-L477C5

Partially resolved.

Suggestion F: Reduce Number of Clones

Location

Tables in Triton-AIR and Triton-VM. For example:
Cascade Table

Synopsis

The current implementation exhibits a high number of clones, which can lead to
unnecessary memory usage and impact performance. Frequent cloning of variables,
especially within the constraints, may indicate that the scope of variables is not being
managed effectively, potentially leading to redundant computations and inefficiencies.

Mitigation

Refactor the code to minimize the number of clones by introducing proper scoping for
variables. Consider using mutable references or other techniques to manage data ownership
and lifetimes more effectively. For instance, variables that are cloned multiple times could
be defined in a more limited scope or reused where appropriate. This will help optimize
memory usage and enhance overall performance while maintaining clarity and functionality

in the constraints logic.

Status

The Triton VM will be resolving this but will be on their lower priority in their to-do-list.

Verification

Partially resolved.

Suggestion G: Theoretical Proof of Arithmetization

Location

Arithmetization Link

Synopsis

The current implementation relies on arithmetization methods, but there is a lack of formal
theoretical proofs demonstrating that the mathematical foundations and transformations
used are sound and valid. Without rigorous validation, the integrity and reliability of the
cryptographic functions may be called into question, potentially undermining the system's

security.

Mitigation


https://github.com/TritonVM/triton-vm/blob/master/triton-air/src/table/cascade.rs
https://github.com/TritonVM/triton-vm/tree/master/triton-air

Conduct a comprehensive theoretical proof of the arithmetization process used in the
implementation and document the findings in an academic paper. This paper should detail
the mathematical principles involved, the transformations applied, and the conditions under
which the arithmetization holds. By providing a solid theoretical foundation, the proof will
enhance confidence in the correctness of the cryptographic implementation and serve as a
valuable resource for future research and development in this area.

Status

The triton VM team has accepted our suggestion and acknowldged the fact that there
should be theoretical rigour behind the protocol mentioned in the specification in the form
of a technical/research paper.

Verification

Unresolved.

NB: For some of the issues, we have mentioned few of the exact code locations where the
issue is present. We have not provided an exhaustive list of all the locations where the issue
could be present simply because the list will be too long. Please check the entire codebase
accordingly searching for similar occurrences of the issue and correct all such places.

Our Methodology

Manual Code Review

In our manual review of the code, we examine potential concerns related to code logic, error
handling, protocol details, cryptographic implementations, and the handling of random
number generators. We also identify areas where implementing more defensive
programming practices could help mitigate risks and simplify future audits. While the
primary focus is on the code within the audit scope, we also analyze dependencies and
their behavior when relevant to the investigation.

Vulnerability Analysis

Our audit process involves manual code analysis, user interface testing, and whitebox
penetration testing. We begin by reviewing the project's website to gain a high-level
understanding of the software's functionality, followed by discussions with the developers
to grasp their vision for the project. After installing and using the software, we explore its
user interactions and roles while brainstorming potential threat models and attack surfaces.
We review design documents, similar projects, source code dependencies, and open issue
tickets to gather additional context beyond the implementation itself. From there, we
hypothesize potential vulnerabilities and proceed with our Issue Investigation and
Remediation process for each identified concern.



Documenting Results

We employed a conservative and transparent approach to identifying and addressing
potential security vulnerabilities. As soon as a possible issue is identified, we create an
Issue entry in this document, even before verifying its feasibility or impact. This
conservative method ensures that we document suspicions early, even if they are later
determined to be non-exploitable. Typically, we first record the suspicion along with any
open questions, and then validate the issue through code analysis, live testing, or
automated tests. Code analysis is often preliminary, so we aim to provide supporting
evidence such as test code, logs, or screenshots to confirm findings. Once confirmed, we

assess the practicality of exploiting the issue in a live system.

Suggested Solutions

We seek immediate and comprehensive mitigations that can be implemented in live
deployments, and we also provide recommendations for long-term remediation in future
releases. These suggestions should be carefully reviewed by the developers and
deployment teams, as successful mitigation and remediation are ongoing collaborative
efforts following the delivery of our Initial Audit Report and leading up to a verification

review.

Before sharing our findings and solutions, we prefer to work closely with your team to
identify practical resolutions that can be implemented promptly without significantly
disrupting existing plans. While each issue requires a tailored approach, we aim to establish
a timeline for resolution that balances user impact with the needs of your project team.

Resolutions and Publishing

After the findings have been fully addressed, we conduct a verification review to ensure
that the issues and recommendations have been properly resolved. Once this analysis is
complete, we update the report and issue a Final Audit Report, which can be published in its

entirety.



